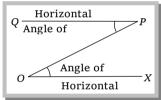
Contents								
4.1	Some Terminology Related to Heights and Distances							
	Angle of elevation and depression							
	Method of Solving a Problem of Heights and Distances							
	Geometrical Properties and Formulae for a Triangle							
	North-east							
	• Bearing							
	Problems on Two Dimensions							
	Problems on Three Dimensions							
	• m-n cot theorem of Trigonometry							
4.2	Some Properties Related to Circle							
4.3	Some Important Results							
4.4	Miscellaneous Examples							
	Assignment (Basic and Advance Level)							
	Answer Sheet							

The name of 'Thales' (about 600 B.C) is invariably associated with height and distance problems. He is credited with the determination of the height of a great Pyramid in Egypt by measuring shadows of pyramid and an auxiliary staff (or gnomon) of known height and comparing the ratios.

$$\frac{H}{S} = \frac{h}{s} = \tan (sun's altitude)$$

Thales is also said to have Calculated the distance of a ship at sea through the proportionality of sides of similar triangles. Problems on height and distance using the similarity are also found in ancient indian works.

This chapter deals with the applications of trigonometry to practical situations concerning measurement of heights and distances which are otherwise not directly measurable By the use of trigonometry we can measure the following :


(i) Height of tower or temple (ii) Breadth of river

Distance between inaccessible points (iv) Angle of vision etc. (iii)

We need to first define certain terms and state some properties before applying the principles of trigonometry.

4.1 Some Terminology Related to Heights and Distances

(1) Angle of elevation and depression: Let O and P be two points such that P is at higher level than O. Let PQ, OX be horizontal lines through P and O, respectively. If Q Angle of an observer (or eye) is at O and the object is at P, then $\angle XOP$ is called the angle of elevation of P as seen from O. This angle is also called the angular height of P from O.

🕀 www.studentbro.in

If an observer (or eye) is at P and the object is at O, then $\angle QPO$ is called the angle of depression of O as seen from P.

(2) Method of solving a problem of heights and distances

(i) Draw the figure neatly showing all angles and distances as far as possible.

(ii) Always remember that if a line is perpendicular to a plane then it is perpendicular to every line in that plane.

In the problems of heights and distances we come across a right angled triangle in (iii) which one (acute) angle and a side is given. Then to find the remaining sides, use trigonometrical ratios in which known (given) side is used, i.e., use the formula.

In any triangle other than right angled triangle, we can use 'the sine rule'. (iv)

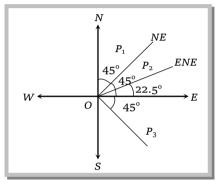
i.e., formula,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
, or cosine formula *i.e.*, $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ etc.

(v)Find the length of a particular side from two different triangles containing that side common and then equate the two values thus obtained.

(3) Geometrical properties and formulae for a triangle

(i) In a triangle the internal bisector of an angle divides the opposite side in the ratio of the arms of the angle. $\frac{BD}{DC} = \frac{c}{h}$.

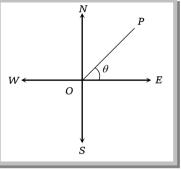
CLICK HERE

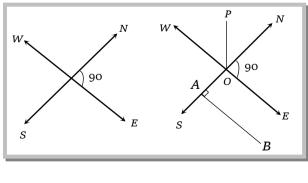

 $AD \perp BC$.

(ii) In an isosceles triangle the median is perpendicular to the base *i.e.*,

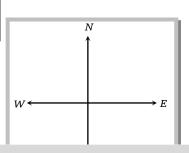
(iii) In similar triangles the corresponding sides are proportional.

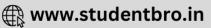
(iv) The exterior angle is equal to sum of interior opposite angles.


(4)**North-east:** North-east means equally inclined to north and east, south-east means equally inclined to south and east. *ENE* means equally inclined to east and north-east.

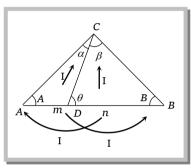

(5) **Bearing** : In the figure, if the observer and the object *i.e.*, O and P be on the same level then bearing is defined. To measure the 'Bearing', the four standard directions East, West, North and South are taken as the cardinal directions.

Angle between the line of observation *i.e.*, *OP* and any one standard direction– east, west, north or south is measured.


Thus, $\angle POE = \theta$ is called the bearing of point *P* with respect to *O* measured from east to north. In other words the bearing of *P* as seen from *O* is the direction in which *P* is seen from *O*.

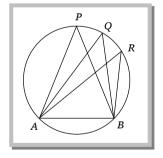

(6)**Problem on two dimensions :** If the actual figure is located in one plane, the problem is of two dimensions. For direction in two dimensional figures, cross vertically as shown in the figure.

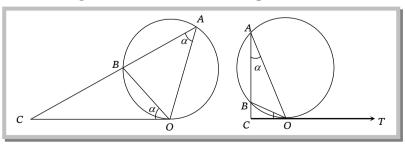
(7) **Problems on three dimensions :** If total actual figure is located in more than one plane, the problem will be of three dimensions. For



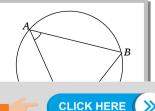
direction in three dimensional figures, cross obliquely as shown. Clearly this oblique cross represents the horizontal plane.

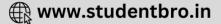
If *OP* be a vertical tower perpendicular to the plane then it will be represented like the figure, clearly $\angle POA = 90^{\circ}$. If the observer at *A* moves in east direction. We draw a line *AB* parallel to east to represent this movement. Clearly $\angle OAB = 90^{\circ}$ (angle between north and east).


(8) *m-n* cot theorem of trigonometry: $(m+n) \cot \theta = m \cot \alpha - n \cot \beta = n \cot A - m \cot B$ (θ on the right)

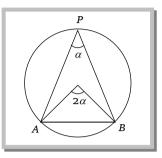

Wole: \Box If θ is on the left then angle in the right is $\pi - \theta$ and $\cot(\pi - \theta) = -\cot \theta$. Hence in this case *m*-*n* theorem becomes $-(m+n)\cot \theta = m \cot \alpha - n \cot \beta$ = $n \cot A - m \cot B$ (θ on the left).

4.2 Some Properties Related to Circle

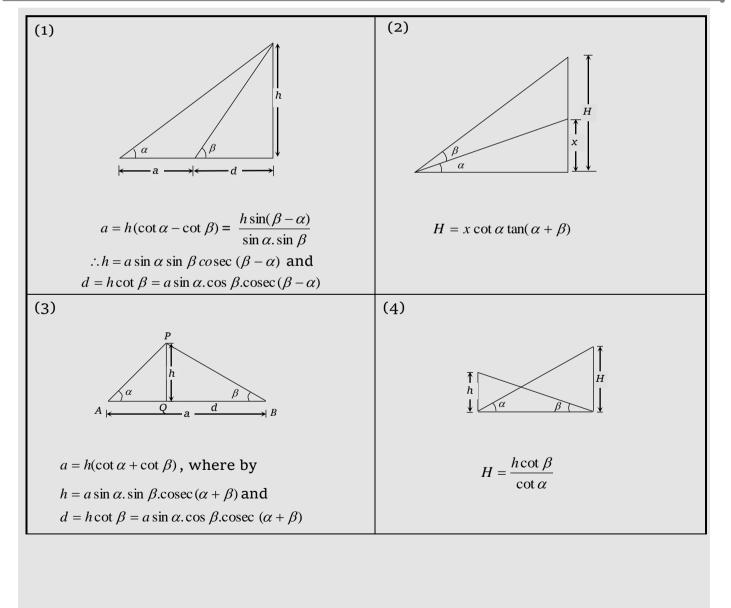

(1) Angles in the same segment of a circle are equal *i.e.*, $\angle APB = \angle AQB = \angle ARB$.

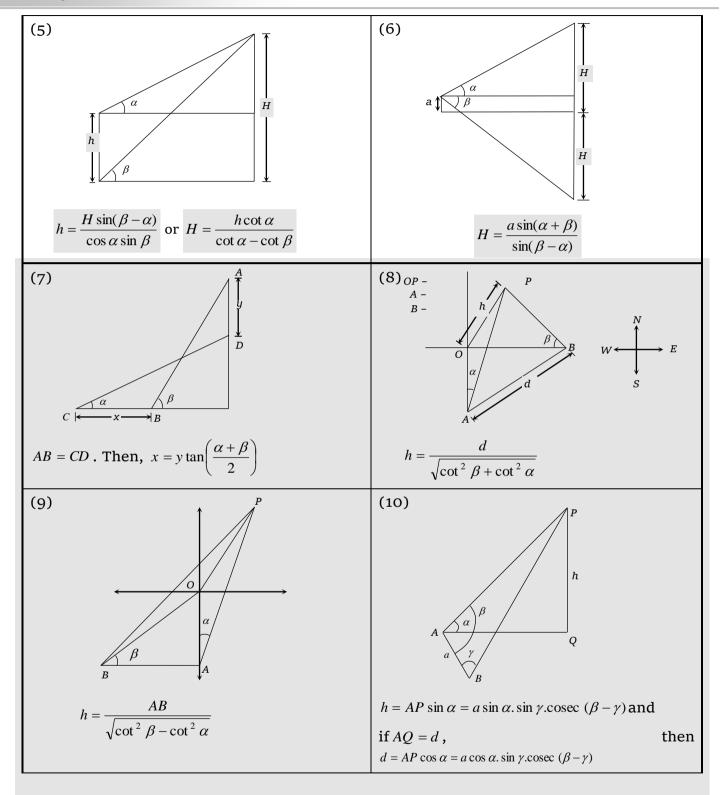


(2) Angles in the alternate segments of a circle are equal.



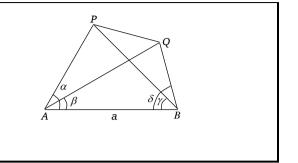
(3) If the line joining two points *A* and *B* subtends the greatest angle α at a point *P* then the circle, will touch the straight line *XX*'





(4)The angle subtended by any chord at the centre is twice the angle subtended by the same on any point on the circumference of the circle.

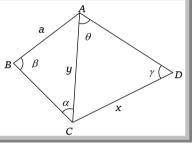
4.3 Some Important Results



Get More Learning Materials Here : 📕

🕀 www.studentbro.in

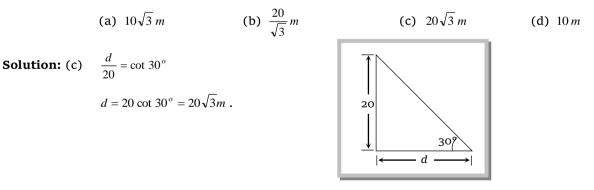
(11) $AP = a \sin \gamma . co \sec(\alpha - \gamma)$ $AQ = a \sin \delta . \csc(\beta - \delta)$ and apply, $PQ^2 = AP^2 + AQ^2 - 2AP . AQ \cos \theta$

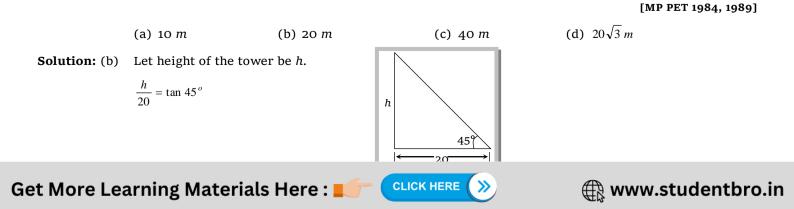

Important Tips

The application of sine rule, the following point be noted. We are given one side a and some other side x is to be

found. Both these are in different triangles. We choose a common side y of these triangles. Then apply sine rule for a and y in one triangle and for x and y for the other triangle and eliminate y. Thus, we will get unknown side x in terms of a. In the adjoining figure a is known side of $\triangle ABC$ and x is unknown is side of triangle ACD. The common side of these triangle is AC = y (say) Now apply sine rule

$$\therefore \quad \frac{a}{\sin \alpha} = \frac{y}{\sin \beta} \dots \dots (i) \quad \text{and} \quad \frac{x}{\sin \theta} = \frac{y}{\sin \gamma} \dots \dots (ii)$$

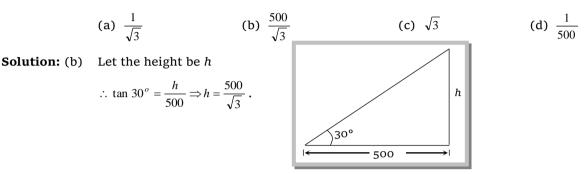

γ (eug) 1.0... upp y ente i ute γ γγ(ii)


Dividing (ii) by (i) we get, $\frac{x \sin \alpha}{a \sin \theta} = \frac{\sin \beta}{\sin \gamma}$; $\therefore x = \frac{a \sin \beta \sin \theta}{\sin \alpha \sin \gamma}$

4.4 Miscellaneous Examples

Example: 1 The angle of elevation of a tower at a point distant *d* metres from its base is 30° . If the tower is 20 meters high, then the value of *d* is

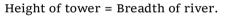
Example: 2 The angle of elevation of the top of a tower from a point 20 *meters* away from its base is 45°. The height of the tower is


h=20m .

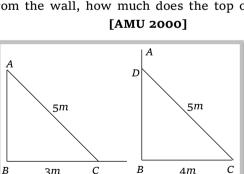
Example: 3 If the angle of elevation of the top of a tower at a distance 500 m from its foot is 30° , then height of the tower is

[Kerala (Engg.) 2002]

Tower


R

Example: 4 A person standing on the bank of a river finds that the angle of elevation of the top of a tower on the opposite bank is 45°. Then which of the following statements is correct


- (a) Breadth of the river is twice the height of the tower
- (b) Breadth of the river and the height of the tower are the same
- (c) Breadth of the river is half of the height of the tower
- (d) None of these
- **Solution:** (b) *AB* is tower and *BC* is river.

From $\triangle ABC$, $\frac{AB}{BC} = \tan 45^{\circ}$ or AB = BC

- Example: 5A ladder 5 metre long leans against a vertical wall. The bottom of the ladder is 3 metre from the wall.
If the bottom of the ladder is pulled 1 metre farther from the wall, how much does the top of the
ladder slide down the wall [AMU 2000][AMU 2000]
 - (a) 1 m
 - (b) 7 m
 - (c) 2 m
 - (d) None of these

Solution: (a) $AB = 4m \implies BD = 3m$ $\therefore AD = 4 - 3 = 1m$.

45

Rive

Example: 6 From the top of a light house 60 *metre* high with its base at the sea level the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is [MP PET 2001, 1994; IIT 1983; U]

(a)
$$\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)60$$
 metre (b) $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)60$ metre (c) $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)$ metre (d) None of these
Required distance = $60 \cot 15^{\circ}$

Get More Learning Materials Here :

Solution: (b)

CLICK HERE

Reference www.studentbro.in

15°

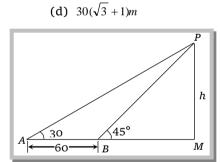
30°

h

$$= 60 \left[\frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right] metre.$$

Example: 7 A person observes the angle of deviation of a building as 30° . The person proceeds towards the building with a speed of $25(\sqrt{3}-1)m/hour$. After 2 *hours*, he observes the angle of elevation as 45° . The height of the building (in *metres*) is

[UPSEAT 2003]


h

0

(a) 100
(b) 50
(c)
$$50(\sqrt{3} + 1)$$

Solution: (b) In ΔPQR , $\tan 30^{\circ} = \frac{PQ}{QR}$
 $\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{50(\sqrt{3} - 1) + h}$
 $\Rightarrow \sqrt{3}h = 50(\sqrt{3} - 1) + h$
 $\Rightarrow (\sqrt{3} - 1)h = 50(\sqrt{3} - 1) \Rightarrow h = 50$ metre.

Example: 8 The shadow of a tower standing on a level ground is found to be 60 m longer when the sun's altitude is 30° than when it is 45° . The height of the tower is

(a) 60 m (b) 30 m (c)
$$60\sqrt{3}m$$

Solution: (d) $\therefore AB = AM - BM \Rightarrow \frac{AB}{h} = \frac{AM}{h} - \frac{BM}{h}$
 $\frac{AB}{h} = \cot 30^\circ - \cot 45^\circ \Rightarrow h = \frac{60}{\sqrt{3} - 1} = \frac{60(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)}$
 $\Rightarrow h = \frac{60(\sqrt{3} + 1)}{3 - 1} \Rightarrow h = 30(\sqrt{3} + 1)m$.
Example: 9 A person is standing on a tower of height $15(\sqrt{3} + 1)m$ and of

45

50(V3·

(d) $50(\sqrt{3}-1)$

Example: 9 A person is standing on a tower of height $15(\sqrt{3} + 1)m$ and observing a car coming towards the tower. He observed that angle of depression changes from 30° to 45° in 3 sec. What is the speed of the car

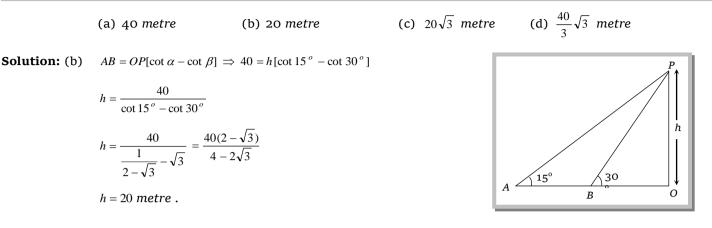
(c) 18 km/hr

(a) $36 \ km/hr$ (b) $72 \ km/hr$ Solution: (a) $AB = OP[\cot \alpha - \cot \beta]$, where $\alpha = 30^{\circ}, \beta = 45^{\circ}$

 $= 36 \ km/hr.$

$$\Rightarrow AB = 15(\sqrt{3} + 1)(\sqrt{3} - 1) = 15(3 - 1) = 30 \text{ metre.}$$

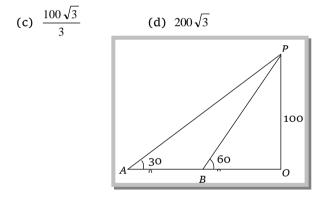
Speed = $\frac{\text{Distance}}{\text{time}} = \frac{30}{3} = 10 \text{ m/sec}$
$$= 10 \times \frac{18}{5} \text{ km/hr}$$


$$B \xrightarrow{30} A \xrightarrow{45} O$$

🕀 www.studentbro.in

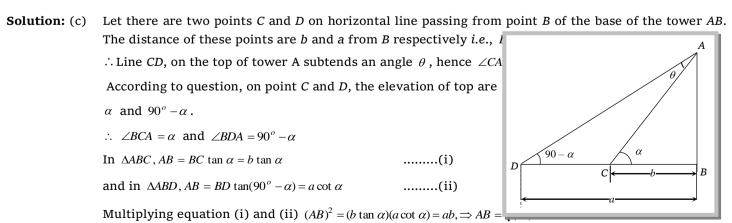
(d) 30 km/hr

Example: 10 The angle of elevation of the top of a pillar at any point A on the ground is 15° . On walking 40 *metre* towards the pillar, the angle becomes 30° . The height of the pillar is


CLICK HERE

A man from the top of a 100 metre high tower looks a car moving towards the tower at an angle of Example: 11 depression of 30°. After some time, the angle of depression becomes 60°. The distance (in *metre*) travelled by the car during this time is [IIT Screening 2001]

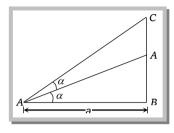
$$= 100 \left[\sqrt{3} - \frac{1}{\sqrt{3}} \right] = \frac{200\sqrt{3}}{3} \quad metre$$


Example: 12 A tower is situated on horizontal plane. From two points, the line joining these points passes through the base and which are *a* and *b* distance from the base. The angle of elevation of the top are α and $90^{\circ} - \alpha$ and θ is that angle which two points joining the line makes at the top, the height of tower will be [UPSEAT 1999]

(a)
$$\frac{a+b}{a-b}$$
 (b) $\frac{a-b}{a+b}$

(c) \sqrt{ab} (d) $(ab)^{\frac{1}{3}}$

🕀 www.studentbro.in


CLICK HERE

Example: 13 A tower of height *b* subtends an angle at a point *O* on the level of the foot of the tower and at a distance *a* from the foot of the tower. If a pole mounted on the tower also subtends an equal angle at *O*, the height of the pole is **[MP PET 1993]**

(a)
$$b\left(\frac{a^2-b^2}{a^2+b^2}\right)$$
 (b) $b\left(\frac{a^2+b^2}{a^2-b^2}\right)$ (c) $a\left(\frac{a^2-b^2}{a^2+b^2}\right)$ (d) $a\left(\frac{a^2+b^2}{a^2-b^2}\right)$

Solution: (b) Let *AB* is tower and *AC* is pole of height *h*.

From
$$\triangle ABO$$
, $\frac{b}{a} = \tan \alpha$ (i)
From $\triangle CBO$, $\frac{b+h}{a} = \tan 2\alpha$ or $\frac{b+h}{a} = \frac{2\tan \alpha}{1-\tan^2 \alpha}$
or $b+h = \frac{2a\frac{b}{a}}{1-\frac{b^2}{a^2}}$ (Put value of $\tan \alpha$ from (i))
or $h = \frac{b(a^2+b^2)}{a^2-b^2}$.

Remember the result $h = \frac{b(a^2 + b^2)}{a^2 - b^2}$ in which b = height of tower, h = height of pole, a = distance of observation point from the tower.

Example: 14 A vertical pole consists of two parts, the lower part being one third of the whole. At a point in the horizontal plane through the base of the pole and distance 20 *metres* from it, the upper part of the pole subtends an angle whose tangent is $\frac{1}{2}$. The possible heights of the pole are

(a) 20*m* and
$$20\sqrt{3}$$
 m (b) 20 *m* and 60 *m* (c) 16 *m* and 48 *m* (d) None of these
Solution: (b) $\frac{H}{3}\cot\alpha = d$ and $H\cot\beta = d$ or $\frac{H}{3d} = \tan\alpha$ and $\frac{H}{d} = \tan\beta$
 $\Rightarrow \tan(\beta - \alpha) = \frac{1}{2} \Rightarrow \frac{1}{2} = \frac{\frac{H}{d} - \frac{H}{3d}}{1 + \frac{H^2}{3d^2}} \Rightarrow 1 + \frac{H^2}{3d^2} = \frac{4H}{d}$
 $\Rightarrow H^2 - 4dH + 3d^2 = 0$

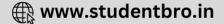
Example: 15 A vertical pole (more than 100 *m* high) consists of two portions the lower being $\frac{1}{3}^{rd}$ of the whole. If the upper portion subtends an angle $\tan^{-1}\frac{1}{2}$ at a point in a horizontal plane through the foot of the pole and distance 40 ft. from it, then the height of the pole is (a) 100 ft. (b) 120 ft. (c) 150 ft. (d) None of these

Solution: (b) Obviously from figure, $\tan \alpha = \frac{h}{120}$

 $\tan\beta = \frac{3h}{120},$

Therefore, $\tan \theta = \tan(\beta - \alpha)$

$$\Rightarrow \frac{1}{2} = \frac{\frac{3h}{120} - \frac{h}{120}}{1 + \frac{3h^2}{14400}} \Rightarrow h = 120, 40$$


 \Rightarrow $H^2 - 80H + 3(400) = 0 \Rightarrow H = 20$ or 60 m.

 $\frac{\theta^{\beta}}{\alpha}$ h/

Get More Learning Materials Here : 📕

.....(i)

.....(ii)

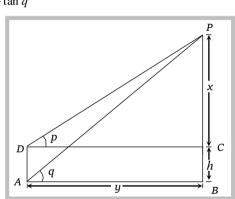
But h = 40 can not be taken according to the condition, therefore h = 120 ft..

Example: 16 20 *metre* high flag pole is fixed on a 80 *metre* high pillar, 50 *metre* away from it, on a point on the base of pillar the flag pole makes an angle α , then the value of tan α is

(a)
$$\frac{2}{11}$$
 (b) $\frac{2}{21}$ (c) $\frac{21}{2}$ (d) $\frac{21}{4}$

Solution: (b) Let $\angle BAC = \beta$ \therefore tan $\beta = \frac{80}{50}$

Now $\tan(\alpha + \beta) = \frac{100}{50}$


$$\Rightarrow \quad \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha . \tan \beta} = 2 \quad \Rightarrow \quad \frac{\tan \alpha + \frac{8}{5}}{1 - \frac{8}{5} \tan \alpha} = 2 \Rightarrow \tan \alpha = \frac{2}{21} .$$

- $\begin{array}{c}
 D \\
 20m \\
 C \\
 80 \\
 A \\
 B
 \end{array}$
- **Example: 17**The top of a hill observed from the top and bottom of a building of height h is at the angle of elevation
p and q respectively. The height of the hill is[UPSEAT 2001]

(a)
$$\frac{h \cot q}{\cot q - \cot p}$$
 (b) $\frac{h \cot p}{\cot p - \cot q}$ (c) $\frac{h \tan p}{\tan p - \tan q}$

Solution: (b) Let *AD* be the building of height *h* and *BP* be the hill, then

$$\tan q = \frac{h+x}{y} \text{ and } \tan p = \frac{x}{y}$$
$$\Rightarrow \tan q = \frac{h+x}{x \cot p} \Rightarrow x \cot p = (h+x) \cot q$$
$$\Rightarrow x = \frac{h \cot q}{\cot p - \cot q} \Rightarrow h + x = \frac{h \cot p}{\cot p - \cot q}$$

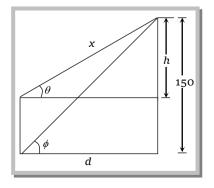
(d) None of these

Example: 18 The angular depressions of the top and foot of a chimney as seen from the top of a second chimney, which is 150 *m* high and standing on the same level as the first are θ and ϕ respectively, then the

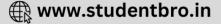
distance between their tops when $\tan \theta = \frac{4}{3}$ and $\tan \phi = \frac{5}{2}$ is

(a)
$$\frac{150}{\sqrt{3}}$$
 metres

netres (b) $100\sqrt{3}$ metres


(c) 150 metres

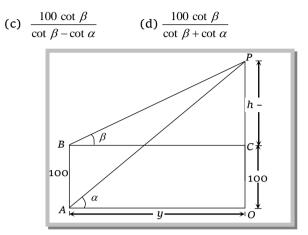
(d) 100*metres*


Solution: (d) $d = 150 \cot \phi = 60m$

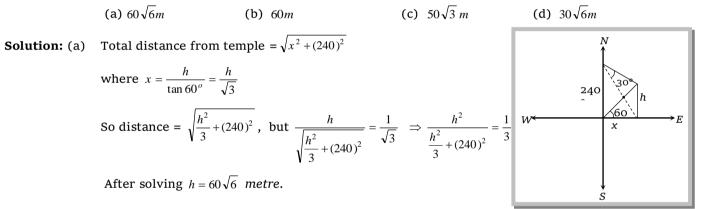
Also, $h = 60 \tan \theta = 80m$

Hence, $x = \sqrt{80^2 + 60^2} = 100 \ m.$

Example: 19 The angle of elevation of a cliff at a point *A* on the ground and a point *B*, 100 *m* vertically at *A* are α and β respectively. The height of the cliff is


(a)
$$\frac{100 \cot \alpha}{\cot \alpha - \cot \beta}$$
 (b) $\frac{100 \cot \beta}{\cot \alpha - \cot \beta}$

Solution: (c) If OP = h, then CP = h - 100


Now, equate the values of *OA* and *BC*

$$h \cot \alpha = (h - 100) \cot \beta$$

$$\therefore h = \frac{100 \cot \beta}{\cot \beta - \cot \alpha}.$$

Example: 20 For a man, the angle of elevation of the highest point of the temple situated east of him is 60° . On walking 240 *metres* to north, the angle of elevation is reduced to 30° , then the height of the temple is

Example: 21 Two men are on the opposite side of a tower. They measure the angles of elevation of the top of the tower 45° and 30° respectively. If the height of the tower is 40*m*, find the distance between the men **[Karnataka CET 1998]**

(a)
$$40 \ m$$
 (b) $40\sqrt{3}m$ (c) $68.280 \ m$ (d) $109.28 \ m$
Solution: (d) $OA = \frac{40}{\tan 45^{\circ}}$
 $OB = \frac{40}{\tan 30^{\circ}}$; $AB = OA + OB = 40[1 + \sqrt{3}]$
 $= 40[\sqrt{3} + 1] = 40 \times 2.732 = 109.28 \ metre.$
Example: 22 A tower subtends an angle α at a point A in the plane
foot of the tower at a point l meters just above A is β . Therefore,
(a) $l \tan \beta \cot \alpha$ (b) $l \tan \alpha \cot \beta$ (c) $l \tan \alpha \tan \beta$ (d) $l \cot \alpha \cot \beta$
Solution: (b) $\frac{H}{OA} = \tan \alpha \Rightarrow H = OA \tan \alpha$ (i)
 $\frac{1}{OA} = \tan \beta \Rightarrow OA = l \cot \beta$ (ii)
From (i) and (ii) $H = l \tan \alpha \cot \beta$.

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

Example: 23 A tower subtends an angle of 30° at a point distant *d* from the foot of the tower and on the same level as the foot of the tower. At a second point *h* vertically above the first, the depression of the foot of the tower is 60° . The height of the tower is

(a)
$$\frac{h}{3}$$
 (b) $\frac{h}{3d}$ (c) $3h$ (d) $\frac{3h}{d}$
Solution: (a) Let *CD* is tower
From *ABCD*, $\frac{H}{d} = \tan 30^{\circ}$ (i)
and from *ABCD*, $\frac{h}{d} = \tan 60^{\circ}$ (ii)
Divide equation (ii) from equation (i), we have $\frac{H}{\frac{h}{d}} = \frac{\tan 30^{\circ}}{\tan 60^{\circ}} \Rightarrow H = \frac{h}{3}$.
Example: 24 A flag-staff of 5*m* high stands on a building of 25*m* high. At an observer at a height of 30*m*. The flag-staff and the building subtend equal angles. The distance of the observer from the top of the flag-staff is **IEAMCET 1993**
(a) $\frac{5\sqrt{3}}{2}$ (b) $5\sqrt{\frac{3}{2}}$ (c) $5\sqrt{\frac{2}{3}}$ (d) None of these
Solution: (b) We have, tan $\alpha = \frac{5}{x}$ and tan $2\alpha = \frac{30}{x}$
 \therefore tan $2\alpha = \frac{30}{5 \cot \alpha} \Rightarrow \tan 2\alpha = 6 \tan \alpha$
 $\Rightarrow 3-3 \tan^2 \alpha = 1 \Rightarrow \tan \alpha = \sqrt{\frac{2}{3}}$
 \therefore $x = 5 \cot \alpha = 5\sqrt{\frac{3}{2}}$.
Example: 25 The length of the shadows of a vertical pole of height *h*, thrown by the sun's ray at three different moments are *h*, 2*h* and 3*h*. The sum of the angles of elevation of the rays at these three moments is equal to **IMP PET 2001**
(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$
Solution: (a) $\tan \alpha = \frac{h}{h} = 1 \Rightarrow \alpha = 45^{\circ}$
 $\tan \beta = \frac{h}{2h} \Rightarrow \beta = \tan^{-1}(\frac{1}{2})$; $\tan \gamma = \frac{h}{3h} \Rightarrow \gamma = \tan^{-1}(\frac{1}{3})$
 \therefore $\alpha + \beta + \gamma = 45^{\circ} + \tan^{-1}\frac{1}{3} = 45^{\circ} + 45^{\circ} = \frac{\pi}{2}$.
Example: 26 A tower subtends angles α , 2α , 3α respectively at points *A*, *B* an through the foot of the tower. Then $\frac{An}{Bc} =$
(a) $\frac{\sin 2\alpha}{\sin 2\alpha}$ (b) $1 + 2\cos 2\alpha$ (c) $2 + \cos 3\alpha$ (d) $\frac{\sin 2\alpha}{\sin \alpha}$

Solution: (b) From sine rule

Get More Learning Materials Here : 📕

CLICK HERE

🕀 www.studentbro.in

Regional www.studentbro.in

$$= \frac{BE}{\sin(B^{0}-3\alpha)} = \frac{BC}{\sin\alpha}$$

$$\Rightarrow \frac{AB}{\sin^{2}\alpha} = \frac{BC}{\sin\alpha}$$
(Since BE = AB)

$$\Rightarrow \frac{AB}{\sin^{2}\alpha} = \frac{BC}{\sin\alpha}$$
(Since BE = AB)

$$\Rightarrow \frac{AB}{BC} = \frac{\sin^{2}\alpha}{\sin\alpha} = 3 - 4\sin^{2}\alpha \Rightarrow \frac{AB}{BC} = 3 - 2(1 - \cos 2\alpha) \Rightarrow \frac{AB}{BC} = 1 + 2\cos 2\alpha$$
.
Example: 27 The angle of elevation of the top of a tower from a point A due south of the tower is α and from a point B due east of the tower is β . If $AB = d$, then the height of the tower is
(a) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(b) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(c) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(d) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(e) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(f) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(g) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(h) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(c) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(d) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(e) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(f) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(g) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}$
(h) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}}$
(h) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}}$
(h) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}}$
(h) $\frac{d}{\sqrt{\tan^{2}\alpha - \tan^{2}\beta}}}$
(h) $\frac{d}{\sqrt{\pi^{2}\alpha - \tan^{2}\beta}}}$
(h) $\frac{d}{\sqrt{\pi^{$

				Height and Distance									
			Basic Level										
1.	The angle of elevation	of the sun, when the sha	ndow of the pole is $\sqrt{3}$ times the	height of the pole, is [MP PET 1991, 1996; SCRA 1999]									
	(a) 60°	(b) 30°	(c) 45°	(d) 15°									
2.	Some portion of a 20	<i>meters</i> long tree is broke t where the tree is broke	en by the wind and the top struc n is	ck the ground at an angle of 30°.									
	(a) 10 <i>m</i>	(b) $(2\sqrt{3} - 3)20m$	(c) $\frac{20}{3}m$	(d) None of these									
3.	makes an angle of 45° with the ground. The total length of tree is												
	(a) 15 metres	(b) 20 metres	(c) $10(1+\sqrt{2})$ metres	(d) $10\left(1+\frac{\sqrt{3}}{2}\right)$ metres									
4.	From the roof of a 15 the house is	<i>metre</i> high house the ang	gle of elevation of a point locate	d 15 <i>metre</i> distant to the base of									
				[MP PET 1988]									
5.	(a) 45°	(b) 30°	(c) 60°	(d) 90° °, then the distance of ship from									
5.	the base of tower is	on or a sinp from the top	of a tower 30 metre lingh is 00	-									
	() 20			[MP PET 1988]									
_	(a) 30 <i>m</i>	(b) $30\sqrt{3}m$	(c) $10\sqrt{3}m$	(d) 10 <i>m</i>									
6.	If a flagstaff of 6 <i>metres</i> high placed on the top of a tower throws a shadow of $2\sqrt{3}$ <i>metres</i> along the groun then the angle (in degrees) that the sun makes with the ground is												
	(a) 60°	(b) 80°	(c) 75°	(d) None of these									
7.	The angle of depression of a point situated at a distance of 70 <i>metres</i> from the base of a tower is 45°. The base of the tower is												
	height of the tower is			[MP PET 1997]									
	(a) 70 <i>m</i>	(b) $70\sqrt{2}m$	(c) $\frac{70}{\sqrt{2}}m$	(d) 35 <i>m</i>									
	(u) / 0112	$(0) + 0 \sqrt{2m}$	$\sqrt{2}$	(u) 55m									
8.	The tops of two poles horizontal, then the le		are connected by a wire. If the v	vire makes an angle 30° with the									
	(a) 12 m	(b) 10 <i>m</i>	(c) 8m	(d) None of these									
9.	-	-		on walking 20 <i>metres</i> toward the									
	tower, the angle of ele		n the height of the tower is										
	(a) 10 <i>metre</i>	(b) $\frac{10}{\sqrt{3}}$ metre	(c) $10\sqrt{3}$ metres	(d) None of these									
10.	60°. When he retirs 40	o <i>meters</i> from the bank, h	he finds the angle to be 30°. The										
	(a) 20 <i>m</i>	(b) 40 <i>m</i>	(c) 30 <i>m</i>	(d) 60m									
11.		ng a straight road towar be 30° and 60° . The heig		distance $\sqrt{3}$ kms., the angles of									
	(a) 3/2 <i>km</i>	(b) $\sqrt{2/3} \ km$	(c) $\sqrt{2} + 1/2 \ km$	(d) $\sqrt{3}$ kms									
12.			evation of a tower standing on the feature of a tower standing on the standard of the standard	he top of a cliff is 60° and that of f the cliff is									

CLICK HERE

Get More Learning Materials Here : 💻

Regional www.studentbro.in

[EAMCET 1989]

🕀 www.studentbro.in

(d) $1:\sqrt{3}$

(d) None of these

(c) $20\sqrt{3}m$ The upper $3/4^{\text{th}}$ portion of a vertical pole subtends an angle $\tan^{-1} 3/5$ at a point in the horizontal plane through 13. its foot and at a distance 40 *m* from the foot. A possible height of the vertical pole is (a) 20 m (b) 40 m (c) 60 m (d) 80 m

(b) $60\sqrt{3}m$

(b) $1:\sqrt{2}$

(a) 30 m

(a) 2:1

14. AB is a vertical tower. The point A is on the ground and C is the middle point of AB. The part CB subtend an angle α at a point P on the ground. If AP = nAB, then the correct relation is

(b) $n = (2n^2 - 1) \tan \alpha$ (c) $n^2 = (2n^2 + 1) \tan \alpha$ (a) $n = (n^2 + 1) \tan \alpha$ (d) $n = (2n^2 + 1)\tan \alpha$

From an aeroplane vertically over a straight horizontally road, the angles of depression of two consecutive mile 15. stones on opposite sides of the aeroplane are observed to be α and β , then the height in miles of aeroplane above the road is [MNR 1986; UPSEAT 1999]

(a)
$$\frac{\tan \alpha \cdot \tan \beta}{\cot \alpha + \cot \beta}$$
 (b) $\frac{\tan \alpha + \tan \beta}{\tan \alpha \cdot \tan \beta}$ (c) $\frac{\cot \alpha + \cot \beta}{\tan \alpha \cdot \tan \beta}$ (d) $\frac{\tan \alpha \cdot \tan \beta}{\tan \alpha + \tan \beta}$

16. The angle of elevation of the top of a tower from the top and bottom of a building of height a are 30° and 45° respectively. If the tower and the building stand at the same level, the height of the tower is

(a)
$$a\sqrt{3}$$
 (b) $a\sqrt{3}-1$ (c) $a\left(3+\frac{\sqrt{3}}{2}\right)$ (d) $a\sqrt{3}+1$

From the bottom of a pole of height h, the angle of elevation of the top of a tower is α and the pole subtends 17. angle β at the top of the tower. The height of the tower is

(a)
$$\frac{h \tan(\alpha - \beta)}{\tan(\alpha - \beta) - \tan \alpha}$$
 (b) $\frac{h \cot(\alpha - \beta)}{\cot(\alpha - \beta) - \cot \alpha}$ (c) $\frac{\cot(\alpha - \beta)}{\cot(\alpha - \beta) - \cot \alpha}$ (d) None of these

From the bottom and top of a house *h* meter high, the angles of elevation of the top of a tower are α and β . The 18. height of the tower is

(a)
$$\frac{h\sin\beta}{\cos\beta - \sin\alpha}$$
 (b) $\frac{h\cos\beta}{\cos\beta - \cos\alpha}$ (c) $\frac{h\tan\beta}{\tan\beta - \tan\alpha}$ (d) $\frac{h\cot\beta}{\cot\beta - \cot\alpha}$

If the angles of elevation of two towers from the middle point of the line joining their feet be 60° and 30° 19. respectively, then the ratio of their heights is

A ladder rests against a wall making an angle α with the horizontal. The foot of the ladder is pulled away from 20. the wall through a distance x, so that it slides a distance y down the wall making an angle β with the horizontal. The correct relation is [IIT 1985]

(c) 3:1

(a)
$$x = y \tan \frac{\alpha + \beta}{2}$$
 (b) $y = x \tan \frac{\alpha + \beta}{2}$ (c) $x = y \tan(\alpha + \beta)$ (d) $y = x \tan(\alpha + \beta)$

The length of the shadow of a pole inclined at 10° to the vertical towards the sun is 2.05 meters, when the 21. elevation of the sun is 38°. The length of the pole is

(a)
$$\frac{2.05 \sin 38^{\circ}}{\sin 42^{\circ}}$$
 (b) $\frac{2.05 \sin 42^{\circ}}{\sin 38^{\circ}}$ (c) $\frac{2.05 \cos 38^{\circ}}{\cos 42^{\circ}}$ (d) None of these

An aeroplane flying horizontally 1 km above the ground is observed at an elevation of 60° and after 10 seconds 22. the elevation is observed to be 30°. The uniform speed of the aeroplane in km/h is

(a) 240 (b)
$$240\sqrt{3}$$
 (c) $60\sqrt{3}$ (d) None of these

From a point a meter above a lake the angle of elevation of a cloud is α and the angle of depression of its 23. reflection is β . The height of the cloud is

[Roorkee 1983; EAMCET 1983, 1985]

(a)
$$\frac{a\sin(\alpha+\beta)}{\sin(\alpha-\beta)}m$$
 (b) $\frac{\alpha\sin(\alpha+\beta)}{\sin(\beta-\alpha)}m$ (c) $\frac{a\sin(\beta-\alpha)}{\sin(\alpha+\beta)}m$ (d) None of these

A house subtends a right angle at the window of an opposite house and the angle of elevation of the window; 24. from the bottom of the first house is 60° . If the distance between the two houses be 6 meters, then the height of [MNR 1978] the first house is

(a)
$$6\sqrt{3}m$$
 (b) $8\sqrt{3}m$ (c) $4\sqrt{3}m$ (d) None of these

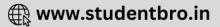
CLICK HERE

	(a) $2500\sqrt{3}m$	(b) 2500 m	(c) $500\sqrt{3} m$	(d) None of these									
		A	dvance Level										
5.		6	n the level ground. <i>P</i> is a public density of β at <i>P</i> , the value of β at <i>P</i> .	point on the level ground such the value of tan eta is									
	(a) $\frac{18}{19}$	(b) $\frac{3}{19}$	(c) $\frac{1}{6}$	(d) None of these									
7.			hished tower at a point dista 60° , the tower must be raised	nt 120m from its base is 45°. If 1 1 to a height									
	(a) $120(\sqrt{3}+1) m$	(b) $120(\sqrt{3}-1) m$	(c) $60(\sqrt{3}+1)m$	(d) None of these									
8.	instant when the a	angles of elevation of the elevation of the elevation of the lower plane from		vertically above another plane at oint on the ground are 60° and 4									
	(a) $100\sqrt{3}$	(b) $\frac{100}{\sqrt{3}}$	(c) 50	(d) $150(\sqrt{3}+1)$									
).	subtends an angle	ϕ . The height of the tower i	is	a ft. in length at the top of the tow									
	(a) $\frac{a\sin\theta\cos\phi}{\cos(\theta+\phi)}$	(b) $\frac{a\sin\phi\cos(\theta+\phi)}{\sin\theta}$	(c) $\frac{a\cos(\theta+\phi)}{\sin\theta\sin\phi}$	(d) None of these									
) .	angle of elevation of	of the top of the tower of he	eight h. If θ be the angle of elements of the second se										
	1 4		(c) $\sin^{-1}\sqrt{\frac{a}{2-h}}$										
ι.	centre of the balloc	on be β , the height of the cer	ntre of the balloon is	rver. If the angle of elevation of t (a)									
	(a) $r \operatorname{cosec} \left(\frac{\alpha}{2}\right) \sin \beta$	(b) $r \csc \alpha \sin\left(\frac{p}{2}\right)$	(c) $r\sin\left(\frac{\alpha}{2}\right)$ cosec β	(d) $r\sin\alpha$ cosec $\left(\frac{p}{2}\right)$									
2.	A stationary balloon is observed from three points <i>A</i> , <i>B</i> and <i>C</i> on the plane ground and is found that its angle elevation from each of these points is α . If $\angle ABC = \beta$ and $AC = b$, the height of the balloon is												
	(a) $\frac{b}{2\sin\beta\cot\alpha}$	(b) $\frac{2b}{\sin\beta\cot\alpha}$	(c) $\frac{b}{2\sin\alpha\cot\beta}$	(d) $\frac{2b}{\sin \alpha \cot \beta}$									
3.	The angle of eleva forming a triangle tower is	tion of the top of the towe is the same angle α . If <i>R</i>	er observed from each of the is the circum-radius of the [EAMCET 1994]	three points <i>A, B, C</i> on the groun triangle <i>ABC</i> , then the height of t									
	(a) $R\sin\alpha$	(b) $R \cos \alpha$	(c) $R \cot \alpha$	(d) $R \tan \alpha$									
1.	angular elevation a	at B is twice and at C is the		straight road directly under it. T between <i>A</i> and <i>B</i> is 200 metres a iven by									
	(a) 50 metres	(b) $50\sqrt{3}$ metres	(c) $50\sqrt{2}$ metres	(d) None of these									
5.	-			ectively at the centre of the circle.									
		bles are in A.P., then $\cot \alpha$, c											
5.	through <i>P</i> . The ang <i>ABC</i> are <i>a</i> , <i>b</i> , <i>c</i> and	les of elevation of Q from A		(d) None of these three points in the horizontal pla equal to θ . The sides of the trian r is									
	(a) $\frac{abc \tan \theta}{4\Delta}$	(b) $(abc)\cot\frac{\theta}{4\Delta}$	(c) $(abc)\sin\frac{\theta}{4\Delta}$	(d) None of these									

CLICK HERE

Regional www.studentbro.in

- 37. A tower *AB* leans towards west making an angle α with the vertical. The angular elevation of B, the topmost point of the tower is β as observed from a point *C* due west of A at a distance *d* from A. If the angular elevation of B from a point *D* due cast of *C* at a distance of from *C* is α to β as observed from a point *C* due west of A at a distance *d* from A. If the angular elevation of B from a point *D* due cast of *C* at a distance of from *C* is α to β .
- of B from a point D due east of C at a distance 2d from C is γ , then $2 \tan \alpha$ can be given as (a) $3 \cot \beta - 2 \cot \gamma$ (b) $3 \cot \gamma - 2 \cot \beta$ (c) $3 \cot \beta - \cot \gamma$ (d) $\cot \beta - 3 \cot \gamma$
- **38.** ABC is a triangular park with AB=AC=100 m. A clock tower is situated at the mid to of BC. The angles of elevation of the tower at A and B are $\cot^{-1} 3.2$ and $\cos ec^{-1} 2.6$ respectively. The tower is th


Assignment (Basic & Advance Level)

wer Sheet

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	с	с	a	с	a	a	a	с	a	a	a	b	d	d	с	b	d	с	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38		
a	b	b	b	a	b	b	a	b	d	a	a	d	d	с	a	с	b		

Heights and Distances

